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H I G H L I G H T S

• LISA and GWR combined allow classifying levels of access to green spaces.
• Levels of access to green spaces vary considerably by people and urban green spaces.
• Urban peripheries in Goiânia, Brazil, have systematically lower levels of access to public green spaces.
• The lowest levels of access to urban vegetation by elderlies are in the city center of Goiânia, Brazil.
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A B S T R A C T

Proximity to urban green spaces offers numerous benefits, sparking increased research and policy interest in
equitable access for different population groups. While spatial analyses evaluate access to urban green space,
previous studies overlook fine-grained spatial disparities, needed for targeted urban planning. Spatial clustering
models (Local Indicators of Spatial Association – LISA) group values significantly higher and lower than the
average in the geographic space. In turn, spatial regression (Geographically Wheigted Regression – GWR) reveals
the strength and direction of the correlation between variables across space. Here, we investigate whether and
how the combination of both types of models helps examine distributional green equity. We show how
combining LISA and GWR gives a more nuanced understanding of distributional green equity. We apply this
approach to Goiânia, Brazil, with an empirical analysis of access to three categories of green spaces: tree cover,
herb-shrub, and public green spaces. Using open-source methods and tools, we examine variations in accessibility
for black people, women, and people of different age, literacy, and income groups. We used a new accessibility
metric accounting for the size/area of green spaces, walking times and competition for accessing green spaces.
The analyses revealed access disparities by population group and green space category identifying specific re-
gions in the city and population groups with consistently limited access to urban green spaces, guiding planners
with refined information to prioritize green space interventions where they are most likely needed. This method
enables targeted, equitable urban planning that fosters inclusive access to green spaces for diverse communities.

1. Introduction

Having access to urban green spaces is fundamental for city dwellers
to benefit from numerous ecosystem services. Urban green spaces are
broadly defined as areas with natural surfaces, including vegetation, and
public green spaces like parks and squares (Taylor & Hochuli, 2017;
WHO, 2016). Among these green spaces, tree cover is efficient in

regulating microclimate and reducing air pollution (Drillet et al., 2020;
Willis & Petrokofsky, 2017). Herbaceous and shrub areas offer similar
benefits and serve as open space for food production on empty lots
(Marçal et al., 2021; McPhearson, Kremer, & Hamstead, 2013). Public
green spaces, provide diverse vegetation and public amenities like
walking and bike trails and playgrounds commonly used by city resi-
dents (Taylor& Hochuli, 2017). Urban green spaces also improve public
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health by positively affecting birth outcomes, physical activity, mental
health, and cardiovascularand respiratory health (Kondo et al., 2018;
WHO, 2016).

The benefits of urban green spaces are particularly important for
vulnerable people (Konijnendijk et al., 2023; Rigolon et al., 2021). Ac-
cording to the United Nations’ Sustainable Development Goals, gov-
ernments are expected to provide universal access to safe and inclusive
green and public spaces, with particular attention to women and chil-
dren, older persons and persons with disabilities (IAEG-SDGs, 2017).
Nonetheless, advancing policies and techniques to ensure equitable ac-
cess to green spaces − regardless of gender, age, race, and socioeco-
nomic status − remains a persistent challenge in cities worldwide
(Nesbitt et al., 2019; Rigolon et al., 2018; 2024).

The analysis of distributional green equity focuses on the spatial
patterns of unjust access to urban vegetation, especially among under-
served groups of people (Nesbitt et al., 2018). Although such in-
vestigations have grown since the 1990 s (Talen, 1997; Talen & Anselin,
1998), mapping these patters with spatial data remains challenging,
mainly in the Global South (Rigolon et al., 2018).

Different studies have explored spatial clustering models to identify
neighborhoods with limited accessibility to green spaces. In this litera-
ture, accessibility refers to how easily people can reach opportunities by
walking or other transportation means (Páez, Scott, & Morency, 2012).
Iraegui, Augusto, and Cabral (2020) applied the Local Indicators of
Spatial Association (LISA) and identified regions where urban green
spaces were largely inaccessible to seniors and children. Zhang (2023),
on the other hand, found that neighborhoods with predominantly low
housing prices had very limited availability of green spaces.

Other studies have used spatial regression models to investigate the
association between access to green space and socioeconomic variables
across space. Yang, Yang, and Zhou (2022) applied Geographically
Weighted Regression (GWR) to examine spatial variations in green space
inequity, observing a negative association between green space access
and certain population groups. Their findings revealed that less
educated individuals and those living in homes smaller than 50 m2

experienced significant green inequity in over half the city, whereas
inequity in less than 10 % of the city area was found for people under 18
and over 65.

Finally, one study developed spatial clustering and regression models
separately to gain a more comprehensive knowledge of the relationship
between population characteristics and different types of green spaces
like parks, squares, and public facilities (Chen et al., 2020). However, to
the best of our knowledge, no study has systematically explored
combining the complementary assumptions of both spatial clustering
and regression models to create new map results for investigating
distributional urban green equity.

To fill this gap, this paper aims to assess how the combination of LISA
and GWR methods could provide new understandings for distributional
urban green equity. We set out to answer the following questions: (1)
where do local demand for and accessibility to urban green spaces
exceed or fall below the average? (2) Where do demand for and acces-
sibility to urban green spaces positively and negatively correlate within
neighborhoods? (3) Lastly, where are the critical areas for green equity
identified in (1) and (2)? We address these questions through LISA and
GWR analyses, with an emphasis on combining them to identify distri-
butional equity in access to urban green spaces at varying levels. We
examine three categories of urban green spaces and six demographic
groups to demonstrate how this methodology aid the understanding of
these relationship.

This study offers a key methodological contribution by introducing a
typology for assessing varying levels of access to urban green spaces,
derived from integrating LISA with GWR results. This typology can be
adapted and applied in diverse urban contexts globally where similar
data is available. Additionally, our work provides novel insights by
mapping differential access to urban green spaces within a major Global
South city, addressing an often-overlooked context in the literature.

2. Methods

The method used in this paper is divided into three steps. First, we
defined and mapped the variables for this study: access to urban green
spaces (i.e., tree cover, herb-shrub, and public green spaces) and share of
sociodemographic groups (children, elderly, adult women, black people,
literates and income). Next, we conducted LISA and GWR, separately, to
explore significant spatial association for each variable and the signifi-
cant spatial correlation between each greenspace and sociodemographic
group. Finally because we wanted to harness the advantages of LISA and
GWR complementary results, we combined them to classify varying
levels of access to urban green spaces for each analyzed population. An
overview of the methodology used in the paper is illustrated in Fig. 1.
The study area and each methodological step are detailed next.

2.1. Study area and spatial analysis unit

We investigated the distributional green equity within Goiânia, the
capital of Goiás, Brazil, which is home to almost 1.5 million people with
a predominantly female adult and elderly population (IBGE, 2023).
Goiânia has a high schooling rate for children and teenagers at around
96 %, though 30 % of its residents earn less than one minimumwage per
capita. Economic disparities have been present since the city’s estab-
lishment in the 1930 s when it was envisioned as part of a project to
densify Brazil’s interior. Goiânia’s flat terrain and natural abundance
were key factors in its settlement, and today, its climate—characterized
by distinct dry and rainy seasons—supports a variety of vegetation, from
grasslands and savannas to forests.

Goiânia has been acknowledged, along with other 33 Brazilian cities,
as Tree Cities of the World by the Arbor Day Foundation and the Food
and Agriculture Organization of the United Nations (SBAU, 2024).
Despite this recognition Ramos et al. (2020), using geoprocessing
techniques, found notable disparities in green space per capita across
different areas of the city. However, their study did not examine other
types of green spaces, nor did it address equity aspects at the citywide
level using accessibility metrics or spatial analysis tools.

Our analysis intended to analyze the entire urbanized area of the
city, considering hexagonal grid cells based on the global H3 index using
the resolution 9 (https://h3geo.org/docs/core-library/restable). At this
resolution, each cell has approximately a side of 174 m and an area of
0.10 km2 and does not compromise computational cost. In the city of
Goiânia, each hexagon generally covers one to four city blocks. This
structure supports a finer-scale analysis of spatial patterns, which is
essential for assessing variations in urban green space access. This way
we could obtain more nuanced understandings of how combining LISA
and GWR methods can favor the analysis of distributional urban green
equity.

To represent residents’ geolocation (i.e., address point), we extracted
centroids from the block-face database of the National Address List for
Statistical Purposes (CNEFE) from the 2010 Census, the latest official
census survey results published in Brazil by the time we processed the
data. Finally, we selected only the cells that were within urban areas in
Goiânia, according to the 2020 census tracts (IBGE, 2020), and which
contained at least one household (Fig. 2).

2.2. Mapping the access to urban green spaces and population demand

Wemapped the access to our three categories of urban green space (i.
e. tree cover, herb-shrub and public green space), based on two ap-
proaches (see data and method used for each approach in Table 1). In
one approach we assumed that the probability of residents accessing
local benefits from the types of vegetation increases with its proportion
within each spatial unit. Thus, we represented the presence of vegeta-
tion in the areas immediately nearby people’s residences by calculating
the fraction of each hexagonal area covered by each vegetation type.

To measure access to public green space, we used the recently
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developed Balanced Floating Catchment Area (BFCA) (Paez, Higgins, &
Vivona, 2019; Pereira, Braga, et al., 2021). Different from other Floating
Catchment Area methods (see Delamater, 2013; Wan, Zou, & Sternberg,
2012), the BFCA avoids generating biased accessibility estimates
because it allocates both demand and supply proportionally using a
standardized impedance matrix to avoid inflation of potential services
supply and demand. In practical terms, these assumptions consider that
one person cannot be simultaneously in more than one public green
space area, and their willingness to walk to one or another area also
consider its congestion probability, dependent on the number of people
living within its catchment area.

To run the BFCA, we used the function “travel_time_matrix” from the
package {r5r}, version 0.6.0 (Pereira, Saraiva, et al., 2021) and the

“floating_catchment_area” function from the {accessibility} package,
version 1.4.0 (Pereira&Herszenhut, 2022), both in R Studio software (R
version 4.1.1). The BFCA calculation is presented in Equation (1):

Ai =
∑J

j=1

Sjwjij
∑n

i=1Piwiij
, (1)

in which, Ai is the BFCA indicator at residence address i that represents
the sum of accessible opportunities j(j = 1,⋯, n) per resident (sup-
ply–demand ratio). Sj represents the service capacity (supply) at public
green space j (public green space area in m2). The PGS area was
attributed to each of their access points to calculate the Sj accessible by
residents at the nearest access point. Pi represents the total number of

Fig. 1. Flowchart of the method used in this study: (a) we measure access to each type of urban green space (UGS) by (1) integrating the area intersected between
each vegetation type and grid cells, and (2) calculating the access to public green spaces using the Balanced Floating Catchment Area Index (BFCA) in each cell. (b)
We determine demand for UGS by population group in each cell based on the weighted average of the share of each population group in census tracts that intersect
with each cell data. (c) Spatial analyses: we carry out Local Indicator of Spatial Association (LISA) on each variable related to demand and access to urban green
spaces; we carry out Geographically Weighted Regression (GWR) to correlate each pair of demand and access to urban green space variables and derive t-statistics,
β- coefficient and GWR residuals; finally, we use Boolean algebra to classify each grid cell into eight different levels of access to urban green spaces. Grid cells were
not classified if they had no significance for LISA and/or GWR or their GWR residuals had spatial dependency.

Fig. 2. Study area delimitation: selection of hexagonal cells within urban boundary that contained residences registered in National Address List for Statistical
Purposes (CNEFE).
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residents (demand) at the address point i(i = 1,⋯,n), calculated with the
dasymetric mapping method described in Equation (2):

Pi =
HijPj

∑n
i=1Hij

, (2)

in which Hij is the number of households at the address point i in the
census tract j, where Pi is located; and Pj, the number of residents in the
census tract j. The population aggregated by census tract was obtained
from the 2010 population census data, the finest resolution and latest
data available by the time of the writing of this paper (IBGE, 2011).

Thewjij andwiij in Equation (1) are the normalized weights introduced
by the BFCA method to correct, respectively, the supply (Equation (3)
and demand (Equation (4) levels:

wjij =
wij

∑n
i=1wij

, (3)

and

wiij =
wij

∑J
j=1wij

. (4)

The wij weights the willingness residents have to walk to a PGS,
considering a distance-decay function, dependent on the travel time
between locations i and j. We defined a logistic distance-decay function
(Equation (5) to model people’s walking behavior:

wij = f(x) =
L

1+ e− k(x− x0)
, (5)

being x0 = 12.5, L = 1, and k = − 0.4). The chosen parameters reduce
wij from 1 to 0 (k < 0) for an increased travel time. Also, 12.5 min was
chosen as the travel time when people’s willingness to walk reduces by
50 % (x0), meaning the maximum time spent would be 25 min (circa 1.5
km at 3.6 km/h). The k value was empirically chosen so the decaying

function would be smoother up to an 8 to 10 min walk, considered a
comfortable walking distance (Filho & Malta, 2010). After a 10 to 12.5
min walk, the decay becomes steeper, tending to zero at 25 min, re-
ported as maximum acceptable travel cost by walking in the interna-
tional literature (Liu; Kwan; Kan, 2021).

To examine inequities concerning access to urban green space, we
also mapped the spatial distribution of key sociodemographic groups:
income per capita and the shares of elderly, black people, adult women,
children and teenagers, and literate people. Table S1 (Supplementary
Material) presents a detailed description and justification for choosing
each population group. We aggregated the mean share of each group in
the hexagons after using the same procedure presented in Equation (2).

2.3. Mapping the levels of access to urban green spaces

A key step in the method used in this paper was the combination of
the LISA and GWR results, which carry different but complementary
assumptions. LISA provides the local spatial association among one
variable’s individual location and its surroundings by clustering values
significantly higher and lower than the global average (Anselin, 1995).
GWR produces local regression models between dependent and inde-
pendent variables, revealing how the strength and direction of the cor-
relation of these variables vary across space (Brunsdon, Fotheringham,
& Charlton, 2014; Fotheringham, Brunsdon, & Charlton, 2002).

We posit that the combination of the results from both methods al-
lows one to determine the main clusters of low access to urban green
spaces and classify them into different levels of access to urban green
space based on the spatial regression between access to urban green
space and its potential demand. For example, while a LISA analysis al-
lows us to determine spatial clusters of areas with low income and low
access to green spaces, a GWR analysis could provide additional insight
by indicating whether, at the neighborhood level, the lowest access cells
are further associated with the lowest incomes, indicating a more severe
shortfall of access by a larger population of that particular group. Next,
we explain the procedures we carried out to run each method and the
suggested typologies created from LISA and GWR combined results.

2.3.1. GWR analysis
Before running the GWR analyses, we performed a linear regression

between each pair of dependent (access to urban green spaces) and in-
dependent variables (sociodemographic groups), because GWR can omit
significant relationships between variables for non-normally distributed
residuals (Yu, Peterson, & Reid, 2009). Thus, we transformed the
dependent variables with the Box-Cox transformation (Box & Cox,
1964), plotted histograms, and used the two-sided Kolmogorov-Smirnov
test to verify the distributions of the residuals before and after trans-
formation (null hypothesis is not rejected for |p| > 0.05) (Figs. S1, S2,
S3, and Table S2 in Supplementary Material). As the transformation
tended to normalize the residuals we kept the Box-Cox transformed
dependent variables henceforth. Log transformation was also assessed,
but did not alter the p-value for residuals dependency in Kolmogorov-
Smirnov test.

We conducted GWR analyses in MGWR (1.0), generating eighteen
models between each green space and socioeconomic standardized
variables, separately, to highlight significant regions where each pair of
response and explanatory variables are correlated. The GWR is
described in Equation (6):

yi = β0(ui, vi)+ βz(ui, vi)xiz+ εi (6)

in which yi is the dependent variable (each urban green space category)
at the location i; β0(ui, vi), the intercept at the location i; xiz the inde-
pendent variable z (each population group) at the location i, and εi the
random error at the location i. The βz(ui, vi) coefficient is described in
Equation (7):

Table 1
Approach, data, and method used for calculating access to urban green space.

Approach Data Method

1) Access to
vegetation based
on its cover
fraction.

• Tree cover and herb-shrub
land cover satellite image
classification (2 m spatial
resolution)(Adorno,
Körting,& Amaral, 2023) ;

Calculate the fraction of
grid cell covered by each
vegetation type as the
presence of vegetation
nearby people’s residence

2) Access to public
green space based
on Balanced
Floating
Catchment Area

• geo-objects on urban park
and squares, provided by
the municipality database
(COMDATA, 2016) and
Open Street Map.1

Calculate the access points
to public green space that
can be reached via
walking considering
walking times (affected by
street network distance
and terrain elevation), the
size/area of green spaces,
and the competition in
terms of supply and
potential demand for these
areas.

• city’s street network
provided by the Open
Street Map.

to represent walkability on
streets

• Access points manually
inserted at the intersection
of a network and a public
green space

To provide accurate
geolocation of access
points to public green
space through street
network

• Digital terrain model (5 m
spatial resolution)
provided by the Municipal
Environment Agency.

to take relief
characteristics into
account

1The data were selected after careful analysis: (1) removing duplicates among
the databases, (2) assessing Google Street View pictures taken after 2019, and
(3) conducting field visits to specific geolocations lacking street view pictures.
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βz(ui, vi) = [XTW(ui, vi)X]− 1XTW(ui, vi)Y (7)

in which Y is the dependent variable vector comprised of a neighbor-
hood denoted byW (ui, vi), which represents a weighting matrix for each
location i, and X the independent variable vector for the same neigh-
borhood. The βz(ui, vi) coefficient t-statistics was estimated to reveal
where each GWR model was significant (|t| > 1,96; α = 5 %). We chose
the kernel bi-square function to represent the neighborhood W, as
described in equation (8):

Wij =

[

1 −

(
dij
diN

)2
]2

, ifdij< diN, otherwise,Wij = 0, (8)

in which Wij is the weight for the j-neighbor of i; dij the Euclidean
distance between i and j centroids; and diN the adaptive bandwidth,
adjusted to the distance between i and its k-nearest neighbor. The
adaptive bandwidth of 45 neighbors was defined for minimizing the
AICc criterium. Moreover, adaptive bandwidth is advantageous to
secure that the bandwidth would adjust accordingly to keep the sample
sizes for the regression either in border or in central regions.

2.3.2. LISA analysis
LISA analysis was carried out in GEODA (v.1.20.0.8). For the spatial

weight matrix, we also fixed the bandwidth to the 45th nearest neigh-
bors as in GWR. We used the inverse distance to the 4th power function
in GEODA because it was the most similar to the kernel bi-square
available in MGWR. Then, we calculated nine univariate Moran’s local
indicator (Anselin, 1995) to determine local spatial clusters of access to
each category of urban green space and local clusters of each population
group. In addition, one LISA analysis for each GWR residuals was carried
out to assess their spatial dependency. Close-to-zero indicator expresses
no clear association (i.e., randomness) between each analyzed location
and its neighbors, positive indicator expresses similarities; and negative,
dissimilarities. We carried out a pseudo-significance test to confirm
whether associations were significantly different from zero at α = 5 % (|
Zi – score | > 1.96).

Finally, by overlapping LISA and GWR results, we classified the study
area into different levels of access to urban green space (Fig. 1 c). To
inform a reliable classification, we only classified the areas where both
LISA and GWR were statistically significant and where the GWR re-
siduals were not spatial dependent. We defined eight levels, ranging
from 1 (lowest level) to 8 (highest level).The interpretation for the
classes are detailed in Table 2 and completed in Table S3 (Supplementary
material).

3. Results

3.1. Descriptive results of access to urban green spaces and
sociodemographic groups

Fig. 3 presents the urban green spaces data and the spatial distri-
bution in quartiles of each independent and dependent variables used in
the analysis. Concerning urban green spaces distribution (Fig. 3a), ac-
cess to tree cover tends to be more randomly distributed than access to
other urban green spaces. However, there are some evident neighbor-
hoods with less than 3 % tree cover in the central, northern, and western
regions, and with more than 23 %, in the eastern periphery of the city.
Regarding herb-shrub, they cover generally below than 8 % of central
neighborhoods and are generally above 18 % or even 33 % in the out-
skirts. For the public green spaces, we had analyzed 1,782 potential
urban green spaces, according to geo-objects from OSM and munici-
pality databases, but only 483 were areas providing both public equip-
ment and vegetation in public areas. These selected public green spaces
are concentrated in the center and south regions. The outskirts presented
mostly area within conservation units or vacant lots without any usable
infrastructure by the population. Thus, only few clusters of higher access

to public green space were found towards the outskirts.
Regarding the distribution of sociodemographic groups (Fig. 3b), we

found three distinct patterns: (1) the highest concentration of elderlies is
in the city core; (2) the highest share of adult women are in smaller
clusters between central and peripheral areas and some in northern
peripheral areas; (3) compared to other neighborhoods in the city, those
located in the outskirts are populated by a higher share of children and
teenagers, black people are, individuals with lower education and
income.

To give greater focus on the applicability of the proposed method in
assessing distinct patterns of variables, in the next sections, we focused
on three population groups with clear distinct pattern distribution: el-
derlies, adult women and children and teenagers. The results for black
people, illiterate people and low-income people, whose spatial distri-
bution are quite similar to children and teenagers’, are presented in the
Supplementary Material (Fig. S4, S5, and S6).

3.2. Local clusters of urban green spaces accessibility and potential
demand

LISA results highlight the significant regions lacking access to urban
green space: in Fig. 4 (a), an hexagon classified with ‘L-L’ means that
both the hexagon and its neighbors have access to urban green spaces
lower than the average. We also observed where the results suggest
higher demand for urban green spaces demand by each population
group. In Fig. 4 (b), every cell and its neighbors classified with ‘H-H’
have higher demand for urban green spaces than the average.

Larger L-L clusters of access to tree cover and herb-shrub are mainly
located in the central-southern area. Concerning the peripheries, herb-
shrub is lacking in a few northern and eastern neighborhoods, while
tree cover is lacking at some extent in all directions. For public green
spaces, the lowest access is towards peripheral zones. The highest
clusters of demands for urban green spaces are likely found in central
and southern zones, considering the elderlies; between central and pe-
ripheral zones, regarding adult women; and in peripheral zones, con-
cerning children and teenagers.

In summary, inequities in access to tree cover and herb-shrub are
likely found in the city center, where the highest shares of elderlies live.
Most clusters with low access to public green spaces, by contrast, are
found towards the outskirts, inhabited by the highest shares of children
and teenagers and by few clusters containing relevant share of adult
women. Although the LISA helps us determine these spatial clusters of
high and low access to green spaces, this method alone does not inform
where and whether access and sociodemographic groups are positively
or negatively correlated in space. Yet, this additional information can be
relevant, as presented in the next section.

3.3. How access to urban green spaces and its potential demand are
correlated within neighborhoods

The local correlation between access to each type of urban green
space and sociodemographic groups may suggest distributional green
inequity mainly in clusters where a significant increase in potential
demand is accompanied by significant decrease in access to urban green
spaces. This relationship is expected by the GWR negative and signifi-
cant β-coefficient (|t-statistic|> 1,96). The Fig. 5 highlight these clusters
concerning the correlation between the access to each urban green
spaces and the shares of adult women, elderlies or children and
teenagers.

Regarding access to tree cover, the local correlations reveal patchy
clusters of inequities (Fig. 5 a, b, and c). However, inequity prevails in
peripheral zones for children and teenagers; in smaller clusters and in all
directions, for adult women; and in central zones for elderlies. Herb-
shrubs (Fig. 5d, e, and f) had a negative correlation mostly with el-
derlies and in every direction. For children and teenagers and adult
women, the negative correlation appeared towards peripheral zones.
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Table 2
Levels (L) of access to urban green space by each sociodemographic groups (demand): Children and teenagers, elderly, adult women or black people. The interpretation
for the share of literate and income per capita is in Table S3.

L Interpretation LISA GWR

access demand β Graph representation

1 Access to urban green spaces is below average, but share of population group (demand) is above average.
Furthermore, GWR negative slope indicates the access decreases as potential demand increases within the
neighborhood. These two conditions makes level 1 neighborhoods the least equitable concerning access to
urban green spaces.

Low High ¡

2 Access to urban green spaces is below average, but demand is above. However, GWR positive slope indicates
that level 2 neighborhoods are more equitable than Level 1 because access increases with demand within the
neighborhood.

Low High þ

3 Both access to urban green spaces and demand are below average. Because demand is lower in level 3 than in
level 2 neighborhoods, relatively fewer people in need might compete for urban green spaces. GWR negative
slope indicates the access decreases as demand increases within the neighborhood.

Low Low ¡

4 Both access to urban green spaces and demand are below average. However, GWR positive slope indicates that
level 4 neighborhoods are more equitable than level 3 because access increases with demand within the
neighborhood.

Low Low þ

5 Both access to urban green spaces and demand are above average. Level 5 neighborhoods are to be more equitable
than previous levels because of the greater access. GWR negative slope indicates that the access decreases as the
demand increases within the neighborhood.

High High ¡

6 Both access to urban green spaces and demand are above average. However, GWR positive slope indicates that level
6 neighborhoods are more equitable than level 5 because access increases with demand within the neighborhood.

High High þ

7 Access to urban green spaces is above average, but demand is below. Because demand is lower in level 7 than in
level 6 neighborhoods, relatively fewer people in need might compete for urban green spaces. GWR negative slope
indicates the access decreases as demand increases.

High Low ¡

(continued on next page)
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The negative correlation between public green spaces and the popula-
tion (Fig. 5g, h, and i) was significant mainly for children and teenagers,
either in central areas and in the outskirts. For adult women and the
elderlies those correlation occurred generally in smaller and scattered
clusters and in both central and peripherical zones.

The negative correlation between variables in GWR highlighted
possible inequitable neighborhoods, not presented by LISA, in which
access to urban green space tends to decrease for an increased demand.
However, GWR does not inform where the access to urban green spaces
is actually lower than average and likely a greater concern to urban
planners. For instance, a negative correlation between children and
teenagers and public green space (Fig. 5), should be more a concern in
peripheral zones, where a higher share of that population lives with
lower levels of access to urban green spaces (Fig. 4). Thus, by combining
LISA and GWR results, we could highlight such critical regions con-
cerning distributional green equity, as presented next.

3.4. Combined results: Where are the priority areas to improve urban
green spaces spatial equity?

We were able to determine eight levels of access to urban green
spaces for the cells where GWR residuals were not spatially dependent
(see results for GWR residuals in Supplementary Material, Fig. S7 and S8).
The lower the level of access to urban green space, the greater the
distributional green inequities for a particular group (Fig. 6).

Concerning children and teenagers, adult women, and the elderlies,
the proportion of the study area classified in different levels of access to
tree cover averaged 5,33 % (140 cells), to herb-shrub, 12 % (324 cells),
and to public green spaces, 17 % (442) (Fig. 6). Among the classified
cells, 62 cells (49 %) were assigned the lowest level of access by elderly
people, 24 (15 %) by children and teenagers, and 2 (5 %) by adult
women. Regarding classified cells for herb-shrub, there were circa 5 cells
(2.4 %) in the study area with lowest access levels for children and
teenagers and adult women, and 191 cells (65 %) for elderlies. The
lowest levels of access were in central zones for elderlies, but towards
periphery, for adult women and children and teenagers.

Concerning the classified cells for public green space, the results
point in the opposite directions. Only 2 cells (0,35 %) were classified
with the lowest equity levels considering the elderlies. This same class
were observed in 68 (44 %) out of 154 classified cells for adult women,
and in 166 (44 %) out of 376 classified cells for children and teenagers.
For the latter two groups, similar to the vegetation types results, the cells
classified as less equitable are generally towards peripheral zones, while
for the elderlies towards city center.

4. Discussions

4.1. Methodological contribution

In this study, we proposed a novel approach to examine distribu-
tional green equity based on the combination of significant results of
spatial clustering and spatial regression methods. While the GWR results
alone (Fig. 5) suggested inequity for elderly people to access both tree
cover and herb-shrub in central areas and the outskirts, LISA highlighted

a high share of elderly with low access mainly in central areas. LISA and
GWR combined revealed that the level of access to vegetation types by
the elderly people increases towards the outskirts. By knowing where
the lowest levels of access are, urban planners can target priority loca-
tions to provide more urban green spaces, according to population
needs.

Chen et al. (2020) explored green inequity using both GWR and LISA
analyses, applied as complementary tools rather than to synthesize a
final map result disclosing disparities in green space provision. Using
LISA, the authors mapped the uneven distribution of four types of Public
Open Spaces (parks, squares, green lands, and public facilities). With
GWR, they examined the spatial correlation between population
agglomeration and the distance to each type of Public Open Space,
identifying significant areas where negative associations occurred.
While their study highlights spatial disparities in Public Open Spaces
and population agglomeration, it did not propose targeted priority areas
for public action, which our approach is able to do by combining LISA
and GWR results.

On the other hand, Yang et al. (2022) mapped urban green space
inequity levels in the neighborhood superimposing only GWR results for
six vulnerable groups: children, older adults, less-educated individuals,
immigrants, residents of homes smaller than 50 m2, and those in low-
rent housing. Although this approach effectively highlighted zones
with critical inequity problems in all the groups studied, relying solely
on GWR may overlook important distinctions. For instance, it cannot
differentiate neighborhoods with reduced green spaces for increasing
populations from those with excess green spaces for increasing popu-
lation, because both situations reflect a negative association between
variables. By integrating GWR results with Local Indicators of Spatial
Association (LISA), as we propose, it becomes possible to prioritize areas
where specific populations face the most significant green space
deficits.“

Therefore, integrating GWR and LISA offers a significant advance-
ment in analyzing urban green space inequity by combining their
complementary strengths. Together, these methods enable a more
comprehensive understanding of inequities. Additionally, the combi-
nation enhances the precision of spatial analyses and provides action-
able insights for urban planners to prioritize interventions, ensuring
more equitable access to green spaces across diverse communities.

4.2. Implications for urban planning

The findings from this paper can be used to raise a few policy im-
plications for Goiânia, but could also be relevant to other mid-size cities
with similar patterns of urbanization. Among the three categories of
urban green spaces, public green spaces should be a greater concern for
children and teenagers living in most peripheral zones, thus guaran-
teeing the provision of attractive and public playgrounds and sports
facilities. This is particularly important when considering families with
lowest income are also more concentrated in these areas (Fig. 3 and
Supplementary Material Fig S4). In addition to the central versus pe-
ripheral aspect of public greenspace provision in Goiânia or other cities
in Brazil, studies have reported the lack of maintenance, safety, and
quality of these public spaces, when they exist in marginalized areas

Table 2 (continued )

8 Access to urban green spaces is above average, but demand is below. In addition, GWR positive slope indicates
access increases with the demand within the neighborhood. These two conditions make level 8 neighborhoods the
most equitable concerning access to urban green spaces.

High Low þ

LISA: Local Indicator of Spatial Association; GWR: Geographically Weighted Regression; Z: standard deviation. Levels from 1 to 8 indicate least to most equitable.
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Fig. 3. Spatial distribution of (a) urban green spaces data and access results and (b) the share of (potential demand by) each population group. Access to urban green
spaces and population distribution are classified in quartiles.
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(Sakata, 2018; Vieira, 2020). Although not assessed in this study, the
condition of and preference for urban green spaces characteristics are
also importantly recognized as sub-dimensions of distributional green
equity theory and should be considered for urban planning purposes
(Nesbitt et al., 2018).

The distributional equity in access to tree cover and herb-shrub was
apparently less a concern in the outskirts. Nonetheless, the lacking
public green spaces in the periphery reflects that the remaining vege-
tation are in private areas, vacant lots, or even in conservation units not
structured for the public to access. This can be assumed in this study by
the areas not selected as public green spaces (Fig. 3a), which are poly-
gons available in Open Street Map and the municipality databases,
representing georeferenced green spaces without evidence of public
equipment and use. Thus, urban planners should consider that the
higher abundance of tree cover and herb-shrub in the periphery in
Goiânia can be related to a lower level of urbanization, and not neces-
sarily a deliberate policy effort to conserve that vegetation.

Accordingly, Souza (2019) found that vegetation cover unsettled as
public use or destination ended up incorporated into the real estate
sector, accentuating urban green inequities in Goiânia. The author
investigated laws and decrees on the creation and sale of public areas
and evidenced the loss of Municipal Public Areas in Goiânia to other uses
that occurred between 1954 and 2016. This phenomenon has intensified
over the years, reaching public green space loss of 685,714 m2 between
2013 and 2016 (eight times the area of a regular park in a privileged
area of Goiânia). Even though Goiânia has been recognized for the
abundance of green spaces, our study and the findings of Souza (2019)
point to the importance of increasing the protection and creation of
public spaces and avoiding spaces of segregation in the city.

The results of our study illustrate how the combination of LISA and

GWR can help determine which neighborhoods face critically low access
to urban green spaces. In this case study, we combined LISA and GWR
methods and organized the results by population group. This approach
enables urban planners to identify the specific needs of different groups
more accurately. Alternatively, urban planners could further map the
frequency that every cell is assigned a lowest equity level across all
population groups, similar to the idea proposed by Yang et al. (2022).
Applying this approach in diverse urban settings could offer green space
managers a practical, data-driven framework to guide more equitable
green space distribution strategies in cities worldwide.

4.3. Limitations and ways forward

The availability of good quality open data on public green spaces can
be considered an important limitation to help scaling the proposed
methodology to multiple cities. We found 70 % of misrepresentations of
parks and squares destined for public use in Goiânia, according to the
municipal databases and OSM. While Google Street View aids the vali-
dation process, it can be labor-intensive, based on team size. Addition-
ally, manual insertion of access points for realistic travel time
calculations is another issue that demands relevant processing time.
Future work should focus on automating access point creation and better
organizing OSM labels to facilitate scalable analysis of spatial equity in
urban parks and squares.

Another limitation lies in exclusively focusing on walking as mode of
transportation for calculating access to public green space. Other means
like bikes, cars, or public transportation should provide alternative
scenarios of access to public parks and squares. Nevertheless, priori-
tizing walkability over other transportation means aligns with economic
inclusivity, promoting physical health and reducing greenhouse gas

Fig. 4. Local Indicator of Spatial Association for (a) access to urban green spaces and (b) demand by sociodemographic group. H-H: each cell and its neighbors’
values are higher than average; L-L: each cell and its neighbors’ values are lower than average; H-L: the cell has a value higher than average, but its neighbors, lower;
L-H: the cell has a value lower than average, but its neighbors, higher. Grey areas are not significant (LISA |Zi – score| < 1.96 at α = 0.05).
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emissions (Ngo, Frank,& Bigazzi, 2018). Ensuring access to public green
spaces and urban services within walking distance aligns with the UN’s
sustainable development goals of promoting more inclusive and low-
carbon cities (IAEG-SDGs, 2017).

We should also mention that other outputs of GWR models, namely,
the β-coefficients and the local R2 values were not analyzed in this paper.
We only attempted to highlight significant areas where both access to
urban green spaces and population characteristics were correlated ac-
cording to β-coefficient direction and significance. However, we
acknowledge that including these indicators in future analyses may add
robustness or bring more nuances to the results.

On the theoretical side, urban green equity presupposes the analysis
of several dimensions (Low, 2013; Nesbitt et al., 2018). In tis study we
only looked at the distributional aspect, more specifically, how access to
urban green spaces is distributed in the urban space and across socio-
demographic groups. Previous investigations on the quality of public
squares and parks in Goiânia highlighted the differences in the main-
tenance of public equipment and infrastructure investment in the city’s

neighborhoods (Sakata, 2018; Vieira, 2020). Thus, integrating the
distributional aspect analyzed in this study to other green equity di-
mensions could be pursued in future analyses conducted by both urban
planning researches and practitioners.

Despite the shortcomings mentioned above, the method developed in
this research can importantly contribute to advance the distributional
green equity agenda by providing a means to identify spaces with very
low levels of green equity. In addition, as the method rely on open
software and widely recognized spatial data analyses it can be replicated
in any other city provided with urban green spaces and population data.

5. Conclusions

The proposed method classified an urbanized areas into eight levels
of access to urban green space, aimed at identifying priority areas for
providing urban green spaces that could reduce distributional green
inequities. These classifications varied significantly based on the type of
green space and demographic characteristics. The lowest equity levels,

Fig. 5. Geographically Weighted Regression (GWR) β-coefficient between access to each urban green space (tree cover, herb-shrub, and public green space) and each
population group (children and teenagers, adult women, and elderly). Grey areas are not significant (|t-statistic| < 1.96 at α = 0.05).
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indicating areas of highest priority, were characterized by neighbor-
hoods not only lacking urban green spaces in comparison to more
affluent areas but also showing a trend of even lower provision for the
most vulnerable populations. Conversely, the highest equity level,
denoting the lowest priority, was associated with neighborhoods having
a low concentration of vulnerable populations, high access to urban
green spaces, and a trend of even higher provision of green spaces in
closer proximity to these vulnerable groups.

In summary, we demonstrated how LISA and GWR spatial analyses
combined provided nuanced spatial disparities that could enhance tar-
geted prioritization of areas for urban green spaces provision. While
LISA and GWR have assisted discussions on this topic in previous
studies, their combined results in a synthetic map, as performed in this
study, provided novel understandings that would not been possible
simply using each of these methods alone.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used Chat GPT/

OpenAI in order to improve language and readability. After using this
tool/service, the authors reviewed and edited the content as needed and
take full responsibility for the content of the publication.

CRediT authorship contribution statement

Bruno Vargas Adorno: Writing – original draft, Validation, Meth-
odology, Investigation, Formal analysis, Conceptualization. Rafael H.
M. Pereira: Writing – review & editing, Conceptualization. Silvana
Amaral: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported by the Coordenação de Aperfeiçoamento de

Fig. 6. Levels of green equity between each population group (children and teenager, adult women, and elderlies) and tree cover (a, b, and c), herb-shrub (d, e, and f)
or Public green spaces (g, h, and i).

B.V. Adorno et al. Landscape and Urban Planning 256 (2025) 105297 

12 



Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.landurbplan.2025.105297.

Data availability

Data will be made available on request.

References

Adorno, B. V., Körting, T. S., & Amaral, S. 2023. “Contribution of Time-Series Data Cubes
to Classify Urban Vegetation Types by Remote Sensing.” Urban Forestry and Urban
Greening 79. doi: 10.1016/j.ufug.2022.127817.

Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis,
27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Box, G. E., & Cox, D. R. (1964). An analysis of transformations revisited, rebutted.
Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211–252.
https://doi.org/10.1080/01621459.1982.10477788

Brunsdon, C., Stewart Fotheringham, A., & Charlton, M. E. (2014). Geographically
weighted regression. Geographical Analysis, 28(4), 281–298. https://doi.org/
10.4135/9781412939591.n478

Campos, F., Candido, M. (2010). Reinvente Seu Bairro: Caminhos Para Você Participar
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IBGE. 2011. Censo Demográfico 2010 (2010 Demographic Census). Rio de Janeiro.
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Intermediária 2020. Retrieved January 2, 2023 (https://www.ibge.gov.br/
geociencias/organizacao-do-territorio/estrutura-territorial/26565-malhas-de-
setores-censitarios-divisoes-intramunicipais.html?=&t=sobre).
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Fator de Segregação (Goiânia through the Public Spaces: Squares and Parks as
Segregation Factor).” Master’s thesis.

Wan, N., Zou, B., & Sternberg, T. (2012). A three-step floating catchment area method for
analyzing spatial access to health services. International Journal of Geographical
Information Science, 26(6), 1073–1089. https://doi.org/10.1080/
13658816.2011.624987

WHO. (2016). “Urban Green Spaces and Health: A Review of Evidence.” WHO Regional
Office for Europe 80.

Willis, K. J., & Petrokofsky, G. (2017). The natural capital of city trees. Science, 356
(6336), 374–376. https://doi.org/10.1126/science.aam9724

Yang, W., Yang, R., & Zhou, S. (2022). The spatial heterogeneity of urban green space
inequity from a perspective of the vulnerable: A case study of Guangzhou, China.
Cities, 130. https://doi.org/10.1016/j.cities.2022.103855

Yu, D., Andrew Peterson, N., & Reid, R. J. (2009). Exploring the impact of non-normality
on spatial non-stationarity in geographically weighted regression analyses: Tobacco
outlet density in New Jersey. GIScience and Remote Sensing, 46(3), 329–346. https://
doi.org/10.2747/1548-1603.46.3.329

Zhang, J. (2023). Inequalities in the quality and proximity of green space exposure are
more pronounced than in quantity aspect: Evidence from a rapidly urbanizing
Chinese City. Urban Forestry and Urban Greening, 79. https://doi.org/10.1016/j.
ufug.2022.127811

B.V. Adorno et al. Landscape and Urban Planning 256 (2025) 105297 

13 

https://doi.org/10.1016/j.landurbplan.2025.105297
https://doi.org/10.1016/j.landurbplan.2025.105297
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1080/01621459.1982.10477788
https://doi.org/10.4135/9781412939591.n478
https://doi.org/10.4135/9781412939591.n478
https://doi.org/10.3390/ijgi9100575
https://doi.org/10.1016/j.healthplace.2013.07.012
https://doi.org/10.3390/su12052076
https://doi.org/10.3390/su12052076
http://refhub.elsevier.com/S0169-2046(25)00004-0/h0040
http://refhub.elsevier.com/S0169-2046(25)00004-0/h0040
http://refhub.elsevier.com/S0169-2046(25)00004-0/h0040
https://doi.org/10.3390/ijgi9050308
https://doi.org/10.3390/ijerph15030445
https://doi.org/10.1016/j.uclim.2020.100732
https://doi.org/10.1016/j.uclim.2020.100732
https://doi.org/10.1016/j.ecoser.2013.06.005
https://doi.org/10.1016/j.landurbplan.2018.08.007
https://doi.org/10.1016/j.landurbplan.2018.08.007
https://doi.org/10.1016/j.ufug.2018.07.009
https://doi.org/10.1016/j.trd.2018.04.013
https://doi.org/10.1371/journal.pone.0218773
https://doi.org/10.1371/journal.pone.0218773
https://doi.org/10.1016/j.jtrangeo.2012.03.016
https://doi.org/10.1016/j.socscimed.2021.113773
https://doi.org/10.32866/001c.21262
https://doi.org/10.15446/rcdg.v29.n1.72844
https://doi.org/10.3390/ijerph18052563
https://doi.org/10.3390/urbansci2030067
https://doi.org/10.1068/a300595
https://doi.org/10.2747/0272-3638.18.6.521
https://doi.org/10.1016/j.landurbplan.2016.09.024
https://doi.org/10.1016/j.landurbplan.2016.09.024
https://doi.org/10.1080/13658816.2011.624987
https://doi.org/10.1080/13658816.2011.624987
https://doi.org/10.1126/science.aam9724
https://doi.org/10.1016/j.cities.2022.103855
https://doi.org/10.2747/1548-1603.46.3.329
https://doi.org/10.2747/1548-1603.46.3.329
https://doi.org/10.1016/j.ufug.2022.127811
https://doi.org/10.1016/j.ufug.2022.127811

	Combining spatial clustering and spatial regression models to understand distributional inequities in access to urban green ...
	1 Introduction
	2 Methods
	2.1 Study area and spatial analysis unit
	2.2 Mapping the access to urban green spaces and population demand
	2.3 Mapping the levels of access to urban green spaces
	2.3.1 GWR analysis
	2.3.2 LISA analysis


	3 Results
	3.1 Descriptive results of access to urban green spaces and sociodemographic groups
	3.2 Local clusters of urban green spaces accessibility and potential demand
	3.3 How access to urban green spaces and its potential demand are correlated within neighborhoods
	3.4 Combined results: Where are the priority areas to improve urban green spaces spatial equity?

	4 Discussions
	4.1 Methodological contribution
	4.2 Implications for urban planning
	4.3 Limitations and ways forward

	5 Conclusions
	Declaration of Generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


